Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Vaccine ; 41(32): 4743-4751, 2023 07 19.
Article in English | MEDLINE | ID: covidwho-20231210

ABSTRACT

Targeting the site of infection is a promising strategy for improving vaccine effectivity. To date, licensed COVID-19 vaccines have been administered intramuscularly despite the fact that SARS-CoV-2 is a respiratory virus. Here, we aim to induce local protective mucosal immune responses with an inhaled subunit vaccine candidate, ISR52, based on the SARS-CoV-2 Spike S1 protein. When tested in a lethal challenge hACE2 transgenic SARS-CoV-2 mouse model, intranasal and intratracheal administration of ISR52 provided superior protection against severe infection, compared to the subcutaneous injection of the vaccine. Interestingly for a protein-based vaccine, inhaled ISR52 elicited both CD4 and CD8 T-cell Spike-specific responses that were maintained for at least 6 months in wild-type mice. Induced IgG and IgA responses cross-reacting with several SARS- CoV-2 variants of concern were detected in the lung and in serum and protected animals displayed neutralizing antibodies. Based on our results, we are developing ISR52 as a dry powder formulation for inhalation, that does not require cold-chain distribution or the use of needle administration, for evaluation in a Phase I/II clinical trial.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Neutralizing , Mice, Transgenic , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
2.
2nd International Conference on Biological Engineering and Medical Science, ICBioMed 2022 ; 12611, 2023.
Article in English | Scopus | ID: covidwho-2324906

ABSTRACT

In December 2019, a virus named SARS-CoV-2 broke out in Wuhan in China. The spread of the virus has brought great challenges to the global medical system. At present, over 6 million people died of the diseases caused by the virus. Under these situations, various corresponding vaccines such as Oxford, Pfizer, and Moderna vaccines have been developed and applied to the population. Nevertheless, due to the development of variants of the virus such as Delta and Omicron, there has been a decline in the effectiveness of current vaccines to some extent. Moreover, the proportion of people who have been inoculated with the COVID-19 vaccine in low-income countries is less than 20%. In this case, we designed a new vaccine to deal with these problems. Specifically, we utilized the antigens (RBD, HR1, and HR2) of the virus to cope with its potential variants of it, increasing the effectiveness of the vaccine. Moreover, we designed a new cell expression system to increase the efficiency of vaccine production by using CHO cells as host cells, Neo gene as a selective marker, CMV as a promoter, MBP as affinity tag, and β-globin as a terminator. Eventually, it was worth stating that our designed vaccine was hypothesized to be practicable and functional, it just started one step on the way to tackling the variants of this virus and increasing the productivity of the vaccine. The detailed experiments still needed to be implemented to verify the feasibility of our design. © 2023 SPIE.

3.
Front Immunol ; 14: 1169666, 2023.
Article in English | MEDLINE | ID: covidwho-2312883

ABSTRACT

Background: Allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients must be vaccinated against SARS-CoV-2 as quickly as possible after transplantation. The difficulty in obtaining recommended SARS-CoV-2 vaccines for allo-HSCT recipients motivated us to utilize an accessible and affordable SARS-CoV-2 vaccine with a recombinant receptor-binding domain (RBD)-tetanus toxoid (TT)-conjugated platform shortly after allo-HSCT in the developing country of Iran. Methods: This prospective, single-arm study aimed to investigate immunogenicity and its predictors following a three-dose SARS-CoV-2 RBD-TT-conjugated vaccine regimen administered at 4-week (± 1-week) intervals in patients within 3-12 months post allo-HSCT. An immune status ratio (ISR) was measured at baseline and 4 weeks (± 1 week) after each vaccine dose using a semiquantitative immunoassay. Using the median ISR as a cut-off point for immune response intensity, we performed a logistic regression analysis to determine the predictive impact of several baseline factors on the intensity of the serologic response following the third vaccination dose. Results: Thirty-six allo-HSCT recipients, with a mean age of 42.42 years and a median time of 133 days between hematopoietic stem cell transplant (allo-HSCT) and the start of vaccination, were analyzed. Our findings, using the generalized estimating equation (GEE) model, indicated that, compared with the baseline ISR of 1.55 [95% confidence interval (CI) 0.94 to 2.17], the ISR increased significantly during the three-dose SARS-CoV-2 vaccination regimen. The ISR reached 2.32 (95% CI 1.84 to 2.79; p = 0.010) after the second dose and 3.87 (95% CI 3.25 to 4.48; p = 0.001) after the third dose of vaccine, reflecting 69.44% and 91.66% seropositivity, respectively. In a multivariate logistic regression analysis, the female sex of the donor [odds ratio (OR) 8.67; p = 0.028] and a higher level donor ISR at allo-HSCT (OR 3.56; p = 0.050) were the two positive predictors of strong immune response following the third vaccine dose. No serious adverse events (i.e., grades 3 and 4) were observed following the vaccination regimen. Conclusions: We concluded that early vaccination of allo-HSCT recipients with a three-dose RBD-TT-conjugated SARS-CoV-2 vaccine is safe and could improve the early post-allo-HSCT immune response. We further believe that the pre-allo-HSCT SARS-CoV-2 immunization of donors may enhance post-allo-HSCT seroconversion in allo-HSCT recipients who receive the entire course of the SARS-CoV-2 vaccine during the first year after allo-HSCT.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hematopoietic Stem Cell Transplantation , Adult , Female , Humans , COVID-19/prevention & control , COVID-19/etiology , COVID-19 Testing , COVID-19 Vaccines/administration & dosage , Prospective Studies , SARS-CoV-2 , Tetanus Toxoid
4.
Microbiol Spectr ; 11(3): e0436322, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2316073

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concerns about reduced vaccine effectiveness and the increased risk of infection, and while repeated homologous booster shots are recommended for elderly and immunocompromised individuals, they cannot completely protect against breakthrough infections. In our previous study, we assessed the immunogenicity of an adenovirus-based vaccine expressing SARS-CoV-2 S1 (Ad5.S1) in mice, which induced robust humoral and cellular immune responses (E. Kim, F. J. Weisel, S. C. Balmert, M. S. Khan, et al., Eur J Immunol 51:1774-1784, 2021, https://doi.org/10.1002/eji.202149167). In this follow-up study, we found that the mice had high titers of anti-S1 antibodies 1 year after vaccination, and one booster dose of the nonadjuvanted rS1Beta (recombinant S1 protein of SARS-CoV-2 Beta [B.1.351]) subunit vaccine was effective at stimulating strong long-lived S1-specific immune responses and inducing significantly high neutralizing antibodies against Wuhan, Beta, and Delta strains, with 3.6- to 19.5-fold increases. Importantly, the booster dose also elicited cross-reactive antibodies, resulting in angiotensin-converting enzyme 2 (ACE2) binding inhibition against spikes of SARS-CoV-2, including Omicron variants, persisting for >28 weeks after booster vaccination. Interestingly, the levels of neutralizing antibodies were correlated not only with the level of S1 binding IgG but also with ACE2 inhibition. Our findings suggest that the rS1Beta subunit vaccine candidate as a booster has the potential to offer cross-neutralization against broad variants and has important implications for the vaccine control of newly emerging breakthrough SARS-CoV-2 variants in elderly individuals primed with adenovirus-based vaccines like AZD1222 and Ad26.COV2.S. IMPORTANCE Vaccines have significantly reduced the incidences of severe coronavirus disease 2019 (COVID-19) cases and deaths. However, the emergence of SARS-CoV-2 variants has raised concerns about their increased transmissibility and ability to evade neutralizing antibodies, especially among elderly individuals who are at higher risks of mortality and reductions of vaccine effectiveness. To address this, a heterologous booster vaccination strategy has been considered as a solution to protect the elderly population against breakthrough infections caused by emerging variants. This study evaluated the booster effect of an S1 subunit vaccine in aged mice that had been previously primed with adenoviral vaccines, providing valuable preclinical evidence for elderly people vaccinated with the currently approved COVID-19 vaccines. This study confirms the potential for using the S1 subunit vaccine as a booster to enhance cross-neutralizing antibodies against emerging variants of concern.


Subject(s)
COVID-19 , Immunity, Humoral , Aged , Humans , Animals , Mice , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Ad26COVS1 , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Follow-Up Studies , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , Breakthrough Infections , Antibodies, Viral
5.
Adverse Drug Reactions Journal ; 23(7):357-360, 2021.
Article in Chinese | EMBASE | ID: covidwho-2292807

ABSTRACT

Patients with chronic kidney disease (CKD) are at high risk for coronavirus disease 2019 (COVID-19). Government agencies or learned societies in many countries recommend prioritizing patients with CKD for COVID-19 vaccines. The immune response rate to the COVID-19 vaccines is lower in hemodialysis patients and kidney transplant recipients compared with that in healthy individuals, and increasing the number of vaccinations each member of these population may improve their immune response rate. There was no significant difference in the incidence of adverse reactions after vaccination between patients with CKD and healthy controls. Patients with stable CKD should be vaccinated against COVID-19 unless there were contraindications to vaccination. The mRNA vaccines, inactivated vaccines, and recombinant protein subunit vaccines are all safe for patients with CKD. Patients with CKD treated with rituximab or high-dose glucocorticoid need to weigh the benefits and risks before vaccination, and COVID-19 vaccines can be given when rituximab treatment ends for more than 6 months or after glucocorticoid reduction.Copyright © 2021 by the Chinese Medical Association.

6.
Flora ; 28(1):1-10, 2023.
Article in English | EMBASE | ID: covidwho-2303110

ABSTRACT

Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) predominantly affects the respiratory system. The COVID-19 pandemic has had devastating effects on the health system and the global economy worldwide. To reduce the worsening impact of the pandemic, various treatment options and vaccines have been developed. Despite these efforts the pandemic could not be stopped because of the single-stranded nature of the virus combined with the lack of proof-reading abilities of the RNA-dependent RNA polymerase (RdRp). This results in a high probability of error in the copying process and consequently, mutations occur. The increase in mutations in SARS-CoV-2 reduced the efficacy of antiviral medicines and vaccines. To fight this problem, studies were conducted on the efficacy and safety of using Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) in the diagnosis and treatment of COVID-19. Initially, discovered in archaea, CRISPR is a gene-editing tool that works by altering specific parts of the genome. In this review, we focused on the efficacy and safety of CRISPR technology in the treatment of COVID-19.Copyright © 2023 Bilimsel Tip Yayinevi. All rights reserved.

7.
Movement Disorders Clinical Practice ; 10(Supplement 1):S64-S65, 2023.
Article in English | EMBASE | ID: covidwho-2297107

ABSTRACT

Objective: This study aims to identify the adverse events of COVID-19 vaccine in PD patients including the general and specific PD-related side effects. Background(s): SARS-CoV-2 is one of the most contagious and invasive respiratory viruses emerging in the past 3 years and causing serious, life-threatening diseases and sequelae (long COVID-19 syndrome) [1]. Before the development of COVID-19 vaccine, morbidity and mortality of COVID-19 infection were as high as 1% and increased with age and co-morbidity, especially in more advanced PD. The safety of COVID-19 vaccine was approved in the general population, but no study of side effects in PD. [1] There were only 2 case reports of worsening PD symptoms after the mRNA-1273 vaccine (Spikevax) and BNT162b2 mRNA vaccine (Comirnaty). [2],[3] Methods: The study was conducted between July 2021 - January 2022. The online survey was conducted during COVID - 19 lockdown. 230 PD patients responded to the online survey, and 151 patients were included, 11 patients were excluded due to being unvaccinated. 72 patients were excluded due to incomplete responses. 5 patients were excluded due to multiple entries. Result(s): The most common COVID -19 vaccine in our PD patients was ChAdOx1-S vaccine and inactivated COVID-19 Vaccine (Vero Cell). 21.9% (n=33) of the patients had reported adverse effects of COVID-19 vaccination. The most common side effects are fever (60.6%), and headache (48.5%). These adverse effects occurred mostly on the 1st day after vaccination and rarely persisted for more than 7 days. The most reported were worsening bradykinesia (24.2 %) and insomnia (15.2%). We found no statistically significant difference in side effect and PD-related symptoms between ChAdOx1-S vaccine and inactivated COVID-19 vaccine. Conclusion(s): According to the benefits and risks of COVID-19 vaccines do not appear to be different than in the general population, we recommend the approved COVID-19 vaccination to all PD patients. Some symptoms should be observed in the severe motor fluctuation PD, especially bradykinesia because they might experience more motor fluctuation phenomena. If the symptoms do not disturb the activity of daily living, we can wait and see because most of them can spontaneously improve. Further study with mRNA and protein subunit type of vaccines should be done. (table1)(table2)(table3).

8.
Vaccine ; 41(23): 3497-3505, 2023 05 26.
Article in English | MEDLINE | ID: covidwho-2294781

ABSTRACT

OBJECTIVES: To report the safety and immunogenicity profile of a protein subunit vaccine (MVC-COV1901) compared to AZD1222 and mRNA-1273 when given as a third (booster) dose to individuals who have completed different primary vaccine regimens. METHODS: Individuals were classified according to their primary vaccine regimens, including two-dose MVC-COV1901, AZD1222, or mRNA-1273. A third dose of either half-dose MVC-COV1901, full-dose MVC-COV1901, standard-dose AZD1222, half-dose mRNA-1273 was administered in a 1:1:1:1 treatment ratio to individuals with an interval range of 84-365 days after the second dose. Endpoints included safety, humoral immunogenicity, and cell-mediated immune response on trial days 15 and 29. Exploratory endpoint included testing against variants of concern (Omicron). RESULTS: Overall, 803 participants were randomized and boosted - 201 received half-dose MVC-COV1901, 196 received full-dose MVC-COV1901, 203 received AZD1222, and 203 received half-dose mRNA-1273. Reactogenicity was mild to moderate, and less in the MVC-COV1901 booster group. Heterologous boosting provided the best immunogenic response. Boosting with mRNA-1273 in MVC-COV1901 primed individuals induced the highest antibody titers, even against Omicron, and cell-mediated immune response. CONCLUSIONS: Overall, MVC-COV1901 as a booster showed the best safety profiles. MVC-COV1901 as a primary series, with either homologous or heterologous booster, elicited the highest immunogenic response. CLINICALTRIALS: gov registration NCT05197153.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , ChAdOx1 nCoV-19 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunogenicity, Vaccine , SARS-CoV-2
9.
Vaccine ; 41(21): 3337-3346, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2293136

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Mice , Humans , Antibodies, Neutralizing , Antibodies, Viral , Dipeptidyl Peptidase 4 , Immunity, Cellular , Mice, Transgenic , Adjuvants, Immunologic , Recombinant Proteins , Vaccines, Subunit , Spike Glycoprotein, Coronavirus
10.
Mol Biotechnol ; 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2292423

ABSTRACT

Lipidic carriers are composed of natural, synthetic, or physiological lipid/phospholipid materials. The flexibility of lipid-based delivery systems for transferring a variety of molecules such as immunomodulators, antigens, and drugs play a key role in design of effective vaccination and therapeutic strategies against infectious and non-infectious diseases. Genetic and subunit vaccines are two major groups of promising vaccines that have the potential for improving the protective potency against different diseases. These vaccine strategies rely greatly on delivery systems with various functions, including cargo protection, targeted delivery, high bioavailability, controlled release of antigens, selective induction of antigen-specific humoral or cellular immune responses, and low side effects. Lipidic carriers play a key role in local tissue distribution, retention, trafficking, uptake and processing by antigen-presenting cells. Moreover, lipid nanoparticles have successfully achieved to the clinic for the delivery of mRNA. Their broad potential was shown by the recent approval of COVID-19 mRNA vaccines. However, size, charge, architecture, and composition need to be characterized to develop a standard lipidic carrier. Regarding the major roles of lipid-based delivery systems in increasing the efficiency and safety of vaccine strategies against different diseases, this review concentrates on their recent advancements in preclinical and clinical trials.

11.
Clinical Chemistry ; 68(5):739-741, 2022.
Article in English | EMBASE | ID: covidwho-2249692
12.
Pakistan Journal of Medical and Health Sciences ; 16(12):460-463, 2022.
Article in English | EMBASE | ID: covidwho-2281316

ABSTRACT

Objective: To show new trends in the field of vaccinology and spread awareness among population regarding vaccination of animals and successfully controlling spread of diseases Study Design: This is a review study for the development of animal vaccines and was conducted from September, 2021 to June, 2022 at IMBB Department, The University of Lahore, Lahore, Pakistan. Review of Literature was collected on traditional and recent approaches for the development of veterinary vaccines and gathered for the awareness among the field of veterinary vaccinology. Methodology: Animals provide food and clothing in addition to other value-added products. Changes in diet and lifestyle have increased the consumption and the use of animal products. Infectious diseases in animals are a major threat to global animal health and its welfare;their effective control is crucial for agronomic health, for safeguarding food security and also alleviating rural poverty. Development of vaccines has led to increased production of healthy poultry, livestock, and fish. Animal production increases have alleviated food insecurity. Before year 2000, most veterinary vaccines were from inactivated organisms that were formulated with an oil-based adjuvant or live attenuated vaccines. Result(s): The discovery of antigen/gene delivery systems has facilitated the development of novel prophylactic and therapeutic veterinary vaccines. Uses several bioinformatics algorithms to predict antigen localization and it has been successfully applied to immunize against many veterinary diseases. Vectors and pathogens that may lead to emergent diseases in animals. Preventing transmission of emerging infectious diseases at the animal-human interface is critically important for protecting the world population from epizootics and pandemics. Hence, there is a need to develop new vaccines to prevent diseases in animals. An area of veterinary vaccination that needs more research and discussion is vaccine interference. The phrase itself is ambiguous and might mean either a condition in which immunization against one disease may weaken the protective immunity established by immunization against another, or a circumstance in which the presence of maternally derived antibodies prevent immunization in newborn animals. Practical implication: This study will provide awareness among community about veterinary vaccines and will develop a disease-free state for pets.Vetrinary vaccines not only prevent diseases in animals but also stops their spread among humans. Conclusion(s): This review examines some of the main topics that have emerged in the veterinary vaccine field with the use of modern biotechnology techniques. In addition, development of effective vaccines has led to healthier companion animals. However, challenges remain including climate change that has led to enhancement in vectors and pathogens that may lead to emergent diseases in animals. Preventing transmission of emerging infectious diseases at the animal-human interface is critically important for protecting the world population from epizootics and pandemics. Hence, there is a need to develop new vaccines to prevent diseases in animals.Copyright © 2022 Lahore Medical And Dental College. All rights reserved.

13.
Pathogens ; 9(12)2020 Dec 19.
Article in English | MEDLINE | ID: covidwho-2260360

ABSTRACT

Acinetobacter baumannii has been a major cause of nosocomial infections for decades. The absence of an available vaccine coupled with emerging multidrug resistance has prevented the medical community from effectively controlling this human pathogen. Furthermore, the ongoing pandemic caused by SARS-CoV-2 has increased the risk of hospitalized patients developing ventilator-associated pneumonia caused by bacterial opportunists including A. baumannii. The shortage of antibiotics in the development pipeline prompted the World Health Organization to designate A. baumannii a top priority for the development of new medical countermeasures, such as a vaccine. There are a number of important considerations associated with the development of an A. baumannii vaccine, including strain characteristics, diverse disease manifestations, and target population. In the past decade, research efforts have revealed a number of promising new immunization strategies that could culminate in a safe and protective vaccine against A. baumannii. In this review, we highlight the recent progress in the development of A. baumannii vaccines, discuss potential challenges, and propose future directions to achieve an effective intervention against this human pathogen.

14.
Avicenna Journal of Medical Biotechnology ; 15(2):66-67, 2023.
Article in English | EMBASE | ID: covidwho-2279686
15.
Hum Vaccin Immunother ; 19(1): 2174755, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2288639

ABSTRACT

The receptor-binding domain (RBD) of SARS-CoV-2 S protein is proved to be the major target of neutralizing antibodies. However, on the S protein, only a portion of epitopes in RBD can be effectively displayed with dynamic changes in spatial conformations. Using RBD fragment as antigen can better expose the neutralizing epitopes, but the immunogenicity of RBD monomer is suboptimal. Multimeric display of RBD molecules is a feasible strategy to optimize RBD-based vaccines. In this study, RBD single-chain dimer derived from Wuhan-Hu-1 was fused with a trimerization motif, and a cysteine was also introduced at the C-terminus. The resultant recombinant protein 2RBDpLC was expressed in Sf9 cells using a baculovirus expression system. Reducing/non-reducing PAGE, size-exclusion chromatography and in silico structure prediction indicated that 2RBDpLC polymerized and possibly formed RBD dodecamers through trimerization motif and intermolecular disulfide bonds. In mice, 2RBDpLC induced higher levels of RBD-specific and neutralizing antibody responses than RBD dimer, RBD trimer and prefusion-stabilized S protein (S2P). In addition, cross-neutralizing antibodies against Delta and Omicron VOC were also detected in the immune sera. Our results demonstrate that 2RBDpLC is a promising vaccine candidate, and the method of constructing dodecamers may be an effective strategy for designing RBD-based vaccines.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Mice , Humans , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics , Recombinant Proteins/genetics , Epitopes
16.
Vaccine ; 41(17): 2793-2803, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2287284

ABSTRACT

Protein subunit vaccines have been widely used to combat infectious diseases, including the current COVID-19 pandemic. Adjuvants play the key role in shaping the quality and magnitude of the immune response to protein and inactivated vaccines. We previously developed a protein subunit COVID-19 vaccine, termed ZF2001, based on an aluminium hydroxide-adjuvanted tandem-repeat dimeric receptor-binding domain (RBD) of the viral spike (S) protein. Here, we described the use of a squalene-based oil-in-water adjuvant, Sepivac SWE™ (abbreviated to SWE), to further improve the immunogenicity of this RBD-dimer-based subunit vaccines. Compared with ZF2001, SWE adjuvant enhanced the antibody and CD4+ T-cell responses in mice with at least 10 fold of dose sparing compared with ZF2001 adjuvanted with aluminium hydroxide. SWE-adjuvanted vaccine protected mice against SARS-CoV-2 challenge. To ensure adequate protection against the currently circulating Omicron variant, we evaluated this adjuvant in combination with Delta-Omicron chimeric RBD-dimer. SWE significantly increased antibody responses compared with aluminium hydroxide adjuvant and afforded greater neutralization breadth. These data highlight the advantage of emulsion-based adjuvants to elevate the protective immune response of protein subunit COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines , Adjuvants, Vaccine , Protein Multimerization , Antibodies, Viral/immunology , SARS-CoV-2/genetics , Mutation , Mice, Inbred BALB C , Humans , Animals , Mice , Binding Sites , Cell Line
17.
Vaccine ; 41(17): 2781-2792, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2276426

ABSTRACT

Cost-effective, and accessible vaccines are needed for mass immunization to control the ongoing coronavirus disease 2019 (COVID-19), especially in low- and middle-income countries (LMIC).A plant-based vaccine is an attractive technology platform since the recombinant proteins can be easily produced at large scale and low cost. For the recombinant subunit-based vaccines, effective adjuvants are crucial to enhance the magnitude and breadth of immune responses elicited by the vaccine. In this study, we report a preclinical evaluation of the immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052 (TLR7/8 agonist)-Alum adjuvant. This vaccine formulation, named Baiya SARS-CoV-2 Vax 2, induced significant levels of RBD-specific IgG and neutralizing antibody responses in mice. A viral challenge study using humanized K18-hACE2 mice has shown that animals vaccinated with two doses of Baiya SARS-CoV-2 Vax 2 established immune protection against SARS-CoV-2. A study in nonhuman primates (cynomolgus monkeys) indicated that immunization with two doses of Baiya SARS-CoV-2 Vax 2 was safe, well tolerated, and induced neutralizing antibodies against the prototype virus and other viral variants (Alpha, Beta, Gamma, Delta, and Omicron subvariants). The toxicity of Baiya SARS-CoV-2 Vax 2 was further investigated in Jcl:SD rats, which demonstrated that a single dose and repeated doses of Baiya SARS-CoV-2 Vax 2 were well tolerated and no mortality or unanticipated findings were observed. Overall, these preclinical findings support further clinical development of Baiya SARS-CoV-2 Vax 2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Rats , Rats, Sprague-Dawley , COVID-19/prevention & control , Aluminum Hydroxide , Adjuvants, Immunologic , Antibodies, Neutralizing , Macaca fascicularis , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
18.
Vaccines (Basel) ; 11(2)2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2275414

ABSTRACT

Because vaccine development is a difficult process, this study reviews aspects of phages as vaccine delivery vehicles through a literature search. The results demonstrated that because phages have adjuvant properties and are safe for humans and animals, they are an excellent vaccine tool for protein and epitope immunization. The phage genome can easily be manipulated to display antigens or create DNA vaccines. Additionally, they are easy to produce on a large scale, which lowers their manufacturing costs. They are stable under various conditions, which can facilitate their transport and storage. However, no medicine regulatory agency has yet authorized phage-based vaccines despite the considerable preclinical data confirming their benefits. The skeptical perspective of phages should be overcome because humans encounter bacteriophages in their environment all the time without suffering adverse effects. The lack of clinical trials, endotoxin contamination, phage composition, and long-term negative effects are some obstacles preventing the development of phage vaccines. However, their prospects should be promising because phages are safe in clinical trials; they have been authorized as a food additive to avoid food contamination and approved for emergency use in phage therapy against difficult-to-treat antibiotic-resistant bacteria. Therefore, this encourages the use of phages in vaccines.

19.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2254740

ABSTRACT

Classified as a class B infectious disease by the World Organization for Animal Health (OIE), bovine viral diarrhea/mucosal disease is an acute, highly contagious disease caused by the bovine viral diarrhea virus (BVDV). Sporadic endemics of BVDV often lead to huge economic losses to the dairy and beef industries. To shed light on the prevention and control of BVDV, we developed two novel subunit vaccines by expressing bovine viral diarrhea virus E2 fusion recombinant proteins (E2Fc and E2Ft) through suspended HEK293 cells. We also evaluated the immune effects of the vaccines. The results showed that both subunit vaccines induced an intense mucosal immune response in calves. Mechanistically, E2Fc bonded to the Fc γ receptor (FcγRI) on antigen-presenting cells (APCs) and promoted IgA secretion, leading to a stronger T-cell immune response (Th1 type). The neutralizing antibody titer stimulated by the mucosal-immunized E2Fc subunit vaccine reached 1:64, which was higher than that of the E2Ft subunit vaccine and that of the intramuscular inactivated vaccine. The two novel subunit vaccines for mucosal immunity developed in this study, E2Fc and E2Ft, can be further used as new strategies to control BVDV by enhancing cellular and humoral immunity.


Subject(s)
Diarrhea Virus 2, Bovine Viral , Immunity, Mucosal , Viral Vaccines , Animals , Cattle , Humans , Antibodies, Viral , Diarrhea , HEK293 Cells , Vaccines, Subunit/immunology , Viral Vaccines/immunology , Hemorrhagic Syndrome, Bovine/prevention & control
20.
Small ; 19(8): e2205819, 2023 02.
Article in English | MEDLINE | ID: covidwho-2254621

ABSTRACT

Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.


Subject(s)
COVID-19 , Animals , SARS-CoV-2 , Bacterial Proteins/chemistry , Vaccines, Synthetic , Vaccines, Conjugate , Antigens , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL